
Ranger: 3D Space Mission Visualization in a Web
Browser

Marc Pomerantz

Technical Group Supervisor
Information and Data Management Group (393G)
Mission Control Systems Section
Jet Propulsion Laboratory,
California Institute of Technology,
Pasadena, CA, 91109

Contact: Marc.I.Pomerantz@jpl.nasa.gov

Copyright 2019
California Institute

of Technology.
Government Sponsorship

Acknowledged

Outline

v Engineering Goals
v Past Visualization Projects
v Customer Domains
v 3D visualization in prehistoric and modern times
v Ranger Overview
v Ranger System Architecture
v Who is Using Ranger?
v Flow Server Architecture
v Summary

Copyright 2019
California Institute

of Technology.
Government Sponsorship

Acknowledged

Engineering Goals

Build an easily re-useable and data driven
visualization system to help mission engineers understand the state

of their system and that is engineering accurate and can be
reconfigured to support a variety of space and

robotic mission scenarios

Copyright 2019
California Institute

of Technology.
Government Sponsorship

Acknowledged

Past Visualization Projects

• We have supported a variety of NASA/JPL flight and engineering projects by providing
real-time telemetry visualization and situational awareness displays, vehicle commanding,
modeling and simulation

• Hypercube missile defense simulation/visualization

• Autonomous Feature and Star Tracking simulation/visualization

• Synthetic Aperture Radar instrument coverage

• Galileo telemetry display of Huygens probe health and status

• Support of various robotic vehicle operations, simulation and proposal tasks

• MSL landing night telemetry visualization

• LDSD Flight Director display (health and status of vehicle). Used during I&T and
operations during two test flights.
• Hundreds of channels displayed and splashdown predict model in the loop

• M2020 Sampling Arm telemetry display and robot commanding software used
during system hardware and software development

• SMAP boom deployment and antenna spin-up telemetry displays for operations

• Multi-agent autonomy tasks. 3D situational awareness displays.

• M2020 EDL testbed telemetry visualization (like our MSL viz). In development

• Mission visualization for JPL formulation. In development

Copyright 2019
California Institute

of Technology.
Government Sponsorship

Acknowledged

Prehistoric Times
(pre 2015)

Copyright 2019
California Institute

of Technology.
Government Sponsorship

Acknowledged

Interactive 3D Visualization
software required high-end
workstations and expensive
graphics cards

SMAP
Antenna
Deployment

MSL Landing
Night

Synthetic
Aperture

Radar
coverage

Modern Times
(post 2015)

Copyright 2019
California Institute

of Technology.
Government Sponsorship

Acknowledged

Interactive 3D Visualization
software can run inside a web
browser and on typical laptop
and mobile devices

Customer Domains
Copyright 2019

California Institute
of Technology.

Government Sponsorship
Acknowledged

Flight Mission Testing
and Operations

Education and Public
Outreach

Mission Formulation
and Proposals

Robotic System
Development and
Testing

Ranger Overview
Engineering Accurate Visualization

• Ranger is designed to accurately and correctly visualize a 3D representation of
spacecraft and robotic vehicle missions
• Use of supporting mission data and documentation for applications (CAD, GNC

Ref. Frames, environment info, imagery, etc.)
• All calculations double precision on the CPU
• Frame centric system (no world coordinate system). Preserves numerical accuracy
• Automated build and regression testing for Ranger code using Jenkins

• Visualizations runs locally on device graphics hardware in a web browser and on
desktop and mobile devices
• GPU acceleration and programming via shaders

• Can be driven from multiple data sources
• Physics-based models, hardware/software testbeds, mission design tools,

telemetry streams, ephemeris data
• Science data or instrument coverage overlays (static or animated)

• Maintain data security by running server and browser on a secure network
• Authorization at the web server level
• Authentication at the network level

• Flow is Ranger’s backend server that processes data to be shipped to clients

• Immersive VR support (HTC Vive)

• UI support using ReactJS or D3 for integrated dashboard widgets, controls, analytic
visuals

• Over 90 Wiki pages of documentation on Github.jpl.nasa.gov, including examples and
tutorials

Copyright 2019
California Institute

of Technology.
Government Sponsorship

Acknowledged

Ranger CoreRanger Core

Why is Ranger Multi-Mission?
Copyright 2019

California Institute
of Technology.

Government Sponsorship
Acknowledged

Ranger Core

C++/OpenGL compiled
using Emscripten, to
ASM.js and WebGL

(faster execution speed
then native JavaScript)

Multi-mission
Application Specific

User Interface

Scene Description
(json)

Visual Assets
(CAD, imagery)

User Interface
Assets

(HTML, CSS)

Mission Specific
Input Data

Ranger Core changes infrequently and is shared across
applications. Application specific layer can have reusable

elements but typically changes from app to app

Data drives Ranger

The same application
code can provide a
completely different

user experience

by changing visual
assets, vehicle data,
ephemerides or user

interface

Ranger Engine Design
Copyright 2019

California Institute
of Technology.

Government Sponsorship
Acknowledged

Abstraction Layer
(reusable software interface)

Ranger has been designed with an abstraction layer between the JavaScript Application Programmers
Interface (API) and the rendering engine that makes it possible to replace the renderer as new technologies

arise, with minimal changes to the API layer or documentation

C++ and OpenGL
compiles to asm.js (or

WebAssembly)
and WebGL 1 or WebGL 2

ASM.js is more performant than
JavaScript. ~10-50% of native C++

Supported in all major browsers

JavaScript & JSON

Application developers use
JavaScript in the API layer to
build their apps

Rendering engine can be
replaced as new

technologies are available

No (or few) changes to user apps

API layer with
documentation

Rendering
Engine

Ranger Support for Mission Lifecycle
Copyright 2019

California Institute
of Technology.

Government Sponsorship
Acknowledged

Formulation
Help develop innovative, cost-effective,

mission concepts that satisfy mission
requirements and communicate

designs to engineers and stakeholders

(“In The Loop” visualization during trade
studies)

Operations
Multi-dimensional view into the flight

system’s health, status and localization.
Predict models in the loopIntegration and Test

Design and Fabrication

Launch

Future Use:

Virtual Operations for Training
Train new ops personnel without requiring

access to actual spacecraft or vehicles

Typical Ranger System Architecture
Multi-mission interface for Mission Information Analysis, Introspection and Control

Flow Core
(Python)

Merges mission data and analysis
results for presentation to the user

Flow
Mission

Adaptation
Interface
(Python)

Telemetry

Simulation

Copyright 2019
California Institute

of Technology.
Government Sponsorship

Acknowledged

User
Configuration

(JSON)

Flow
Configuration

(JSON)

AI and
other

Analyses or
Predictive

models

Link to Mission Data
Products and Tools

Fault
Injection
For Ops
Training

Ephemeris

Data
sources

WebSockets

Ranger Clients

Who is Using the Ranger System?

• Recent and currently supported projects:

• Engineering Projects
• 2017-2019 JPL Formulation Application (SCOPE) (JPL Section 312)
• 2017-2019 JPL Swarms of autonomous boats (JPL Section 347)
• 2019 M2020 EDL visualization

• JPL Education and Public Outreach
• FY16 Exoplanet - https://exoplanets.nasa.gov/alien-worlds/strange-new-worlds/
• FY17 Eclipse - https://eyes.jpl.nasa.gov/eyes-on-eclipse-web-app.html
• FY18 Eyes on Exoplanets - https://exoplanets.nasa.gov/eyes-on-exoplanets/
• FY19 Earth-Now - https://climate.nasa.gov/earth-now/

• Not only for visualizations of physical systems and situational awareness
• Visualize cyber-physical/virtual systems
• Exploded view
• Unfold the origami spacecraft to display internals
• Display alarm states in context of the flight system
• Flight rule violations

• Future?
• Europa Clipper avionics displays
• Psyche
• Machine Learning integrated w/visualization for mission ops

Copyright 2019
California Institute

of Technology.
Government Sponsorship

Acknowledged

https://exoplanets.nasa.gov/alien-worlds/strange-new-worlds/
https://eyes.jpl.nasa.gov/eyes-on-eclipse-web-app.html
https://exoplanets.nasa.gov/eyes-on-exoplanets/
https://climate.nasa.gov/earth-now/

Flow

Ranger’s Telemetry-to-Visualization Interface

Copyright 2019
California Institute

of Technology.
Government Sponsorship

Acknowledged

Copyright 2019
California Institute

of Technology.
Government Sponsorship

Acknowledged
Flow System Goals

Provide an easy to configure, multi-mission,
data interface to drive Ranger visualizations

• Support multiple simultaneous visualization application clients
• Support data coming from multiple, simultaneous data sources
• Support various data types (telemetry, simulation, ephemeris, alarm states, etc.)
• Support mission-provided or third-party analysis (predictive models, AI, etc.)
• Shorten development time for data source developers by providing an easy to

use Python API
• Exception handling, logging, connect/re-connect for clients
• Connect to existing, non-Python data sources (Matlab, Simulation, Ops tools,

telemetry, etc.) using typical Unix inter-process communication (sockets, pipes,
shared memory, pub/sub messaging, etc.)

Telemetry Visualization System Architecture
NASA Mars 2020 Mission Example using Ranger and Flow

Spacecraft Telemetry

Mission specific
telemetry processor

(Testbed, Sim files, Ops
software) Served

to multiple,
simultaneous

users

Scene visuals
Planetary bodies,

Environment, Vehicles,
Ground Assets, etc.

Flow
(Python)

Mission Specific Multi-mission

Te
le

m
et

ry
/S

im
ul

at
io

n
D

at
a

V
is

ua
l A

ss
et

s 3D view plus
vehicle
performance
data, flight
software states,
annotation, etc.

web browser
Processed
Mission
Telemetry

Optional predictive
models

(i.e. landing location,
consumables, etc.)

Predictive
model output

Configure Flow
(json)

Copyright 2019
California Institute

of Technology.
Government Sponsorship

Acknowledged

To drive a real-time mission visualization, telemetry data is processed as needed and streamed into Ranger via a web server
on a secure network. The Multi-Mission components of Ranger are reused without changes, from mission to mission

Telemetry source
Visuals

Etc.

web socket i/o

Summary
Copyright 2019

California Institute
of Technology.

Government Sponsorship
Acknowledged

• Ranger applications have been deployed for multiple customers since 2016

• Visualizations can be driven by a variety of data sources (telemetry, ephemeris,
simulation)

• Applications can be embedded in existing web pages

• Mission configurations use the Ranger core software and require:
• Mission specific CAD and environment models

• Mappings between telemetry items and changes to Ranger app visuals
• Mission specific UI/UX as needed. UI elements, graphs/plots, ReactJS/D3

• Not only for visualizations of physical systems and situational awareness
• Visualize cyber-physical/virtual systems.

• Unfold the origami spacecraft to display internals and data

• Display telemetry alarm states in context of the flight system or subsystem

• Flight rule violations

• Train operations staff by using playback data with injected anomalies

• Predictive models in the loop with mission telemetry to compare predicts vs. actuals

Backups

Copyright 2019
California Institute

of Technology.
Government Sponsorship

Acknowledged

Ranger System Architecture

• C++11 / Javascript / HTML5
• CMake and Emscripten build C++ into a JavaScript module
• Webpack assembled Javascript assets into a bundled web app

• C++ to Javascript and ASM.js (or WebAssembly) via Emscripten
• ASM.js performance from C++ code is 10-50% of native code performance
• WebAssembly advertised performance is near native code performance

• Now supported in all major browsers

• low-level assembly-like language with a JavaScript API

• JSON Scene description
• Describing the scene as data allows many scenes to be built with zero JavaScript knowledge

• JSON Scene management API
• Allow interacting with the engine from anywhere using a web socket

• Continuous Integration use Jenkins

• Art Pipeline – Blender to Ranger

• Regression Test suite

Copyright 2019
California Institute

of Technology.
Government Sponsorship

Acknowledged

Ranger System Architecture
More Details

• C++ responsible for core renderer and heavy computation
• OpenGL ES 2.0 Renderer
• GLSL shaders. i.e. Lighting or atmosphere effects
• Ephemerides calculation
• Computational utilities
• Note: Supports future linking with C/C++-based modules such as NAIF

Spice Library, predictive models or science data processing into Ranger

• JavaScript library supports the scene API
• Main event loop
• User interaction
• Camera processing
• Scene graph evaluation

• HTML5 provides user interaction layer

Copyright 2019
California Institute

of Technology.
Government Sponsorship

Acknowledged

C++ to Javascript via Emscripten

• Emscripten is a Javascript backend for the LLVM compiler

• C, fortran, C++, ruby, rust, and many more languages are available as
LLVM front ends

• Emscripten can compile to ASM.js or WebAssembly

• ASM.js performance from C++ code is 10-50% of native code
performance

• Performance is substantially better than pure JavaScript for heavy
computations

Copyright 2019
California Institute

of Technology.
Government Sponsorship

Acknowledged

